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Abstract 

The purpose of this report is to highlight some of the most important reasons for failures in 
reengineering efforts despite the best of intentions. We support our observations with 
examples from a variety of experiences over many years. Readers may recognize some of 
the situations presented here and be tempted to conclude that the examples are taken from 
their own organizations, but similar missteps occur quite frequently. 
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1 Introduction 

One of the primary functions of the SEI is to transition software technology. An important 
area of software technology is the process for migrating legacy systems to a more desirable 
target system, especially to a product line. To help the software community migrate its leg- 
acy systems, we have published the Enterprise Framework for the Disciplined Evolution of 
Legacy Systems [Bergey 97] (hereafter referred to as the Framework) and "System Evolution 
Checklists Based on an Enterprise Framework" [Bergey 98] (hereafter referred to as the 
Checklists). The Framework describes a structure and context for exploring reengineering 
decision analysis and disciplined approaches to systems evolution. It attempts to improve the 
reengineering state of the practice, to evaluate reengineering projects, and to characterize 
reengineering initiatives. 

The Framework and Checklists describe a structure for reengineering systems and asks ques- 
tions about the current state of the legacy system and the transition process. Li practice, 
many things can and do go wrong. Organizations moving from a legacy system to a new 
system are, in many instances, highly dysfunctional. This has been made clear from our 
many experiences interacting with both government and corporate clients. 

The SEI has attempted to bring to light case studies of exemplary organizations that are doing 
leading-edge work in software engineering. One such case study is the product line work 
being done by Celsius Technology, from which we produced a comprehensive technical re- 
port [Brownsword 96]. But just as it is important to learn from exemplars, it is also impor- 
tant to learn from mistakes. 

The situations in this report are taken from real experiences known first hand to the authors 
or related directly to us, but care has been taken not to reveal the sources. In some cases, the 
examples may be combinations of two or more different situations, or the "facts" may have 
been altered in insignificant ways. It is expected that readers attempting a reengineering ef- 
fort will recognize potential hazards from among these real cases and will be able to redirect 
their efforts to avoid most of them. This report will have succeeded if it raises the general 
awareness of the potential problems that are most likely to occur in real reengineering efforts. 
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Ten Reasons That Reengineering Efforts Fail 

1. The organization inadvertently adopts a flawed or incomplete reengineering strategy. 
[We have a bulletproof strategy.] 

2. The organization makes inappropriate use of outside consultants and outside contractors. 
[We rely on experts to help us get there.] 

3. The work force is tied to old technologies with inadequate training programs. 
[We're known for our on-the-job training.] 

4. The organization does not have its legacy system under control. 
[We are on top of it—we know the system inside and out.] 

5. There is too little elicitation and validation of requirements. 
[Our needs are simple and straightforward.] 

6. Software architecture is not a primary reengineering consideration. 
[Anybody can specify an architecture.] 

7. There is no notion of a separate and distinct "reengineering process." 
[We have our best people working on it.] 

8. There is inadequate planning or inadequate resolve to follow the plans. 
[We're too busy to plan.] 

9. Management lacks long-term commitment. 
[Tomorrow is another day.] 

10. Management predetermines technical decisions. 
[If there's one thing we're good at, it's giving orders.] 

For each of these ten reasons, we now will provide a brief description of the problem, fol- 
lowed by several examples from our experience that illustrate the problem, followed by 
highlights from the Framework where the issues associated with the problem are covered. 
No prior knowledge of the Framework or Checklists is assumed, but the reference section 
provides links to our Web site where the complete publications can be viewed or down- 
loaded. 
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2 The Top Ten Reasons 

2.1    Reason #1: The organization inadvertently adopts a 
flawed or incomplete reengineering strategy 

While most organizations have a long-range strategy when they embark on a reengineering 
effort, these strategies may be seriously flawed or incomplete due to poor assumptions or lack 
of attention to detail. In some cases, problems can occur because the wrong problem is being 
addressed. In other cases, not all of the components and steps are considered. An example of 
a flawed strategy is when an organization chooses to "replace" rather than "repair" a major 
subsystem while at the same time abandoning corporate knowledge about the legacy system. 
Another example of an incomplete strategy is when an organization chooses a "big-bang" 
implementation approach that ignores how to deploy and transition the system into opera- 
tional use. 

Clearly, high-level strategic choices have substantial impact on the success or failure of a 
reengineering project. Just as architectural decisions have long-lasting impact on the struc- 
ture and operation of a system, these early strategic reengineering decisions are difficult to 
change and have repercussions on the overall reengineering result. When the first steps an 
organization takes toward a new system are inherently flawed, the result will tend toward 
disaster. 

2.1.1   Examples 

A flawed transition strategy 

An organizational decision was made to move from a flat file telemetry system on obsolete 
hardware to a client-server architecture on modern computer resources. No flexibility was 
allowed as to the changeover date. Parallel operation of the two systems was not possible 
and the old system was scrapped immediately. As a result, the new system did not have all 
the capability of the old system. It had some new features and a fancy new user interface, but 
users complained that it did not have some of the old functions. More than a year passed and 
the system still did not have its planned initial operational capability. To make matters 
worse, software development and maintenance positions were cut shortly after installation 
because the client/server system had been justified in the first place as easier to maintain. As 
a result, full operational capability was delayed indefinitely. The organization has reaped 
some benefits from the new architecture, but has inadequate personnel to achieve full opera- 
tional capability and properly maintain it. 
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A flawed environment integration strategy 

A project with a set of chronic problems was reorganized with new personnel and a new 
strategy. The new strategy involved reengineering current code to a scaled down set of re- 
quirements. As part of this strategy, a new software engineering development environment 
was employed. The environment consisted of a set of proven tools, each of which was well 
regarded as among the leaders in its class. However, the plan depended on integrating the 
tools in a seamless way and on using this environment for production of the system. The 
schedule called for the environment to be brought up over a weekend. The integration did not 
work, and production came to a grinding halt. Eventually, a scaled down and more feasible 
strategy was developed, but the project lost precious time and millions of dollars in getting 
back on track. The lesson is that even a relatively small part of an overall plan can cause 
problems if it is on the critical path, and even when individual components are proven, inte- 
gration aspects can come back to haunt a project. 

A flawed strategic process 

An organization had the goal of eliminating a mainframe system and replacing it with a new 
set of workstations. The new system would receive input from external facilities. This data 
would be decoded and some preprocessing would take place on the workstations. The data 
would then be sent to a supercomputer system that would do quality control as well as final 
processing and edits. Most of the complex models would run on the supercomputer system. 
Some of the models would then be transferred to the external facility while others would be 
sent back to the workstations for additional processing. 

The job was a complex engineering effort consisting of several stages. In order to get to the 
future state, several intermediate states needed to be reached. The installation of the worksta- 
tions required hardware installation and testing, development of new software, integration 
testing, and operational installation of the software. In addition, there were ongoing correc- 
tive fixes to the existing system, which needed to be placed under change control, while the 
changes were prioritized and fixed. Despite the complexity of the task, it was initially viewed 
as a simple task of replacing processors that could be handled in conjunction with the normal 
maintenance activities of the maintenance staff. The task overwhelmed the staff, and eventu- 
ally the project was canceled. 

2.1.2   Related Framework Highlights 

By adopting a high-level structure for decision making early in the reengineering process, 
problems such as these can be more easily avoided. The inputs driving the reengineering de- 
cision analysis should include the enterprise strategy, programmatic issues, economic issues, 
and technical issues. The strategic issues include the value of the effort, the corporate impact, 
and the timing. Programmatic issues include resources, priorities, contracting, deliverables, 
schedule, and risk. Technical issues include feasibility, approach, architecture, tools, and risk. 
Economic issues include cost, make/buy decisions, and return on investment. 
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2.2    Reason #2: The organization makes inappropriate use 
of outside consultants and outside contractors 

Outsiders can often offer substantial benefits a project for a number of reasons, such as un- 
derstanding of the domain, technical expertise, objectivity, or simply the ability to bring extra 
personnel to a project quickly. However, if used unwisely, they can also contribute to the fail- 
ure of reengineering projects. Since outsiders rarely know the business as well as insiders, 
their role needs to be carefully defined and monitored. Organizations and outside contractors 
often have conflicting interests. The former obviously wants to minimize the cost of external 
resources, while the latter wants to maximize it. Sometimes the contracting organization re- 
linquishes all control to the contractor. However, it is important for the contracting organiza- 
tion to retain sufficient insight into the work to know if the project is headed for trouble. 

Often, three, four, or five sets of consultants will have looked into a problem over a period of 
as little as a year. Each group often finds similar problems, but the problems persist even 
after being brought to light. Sometimes the consultant's reports are rejected as being biased 
in some way. Sometimes the consultants don't have the right experience or credibility. 
Sometimes they are not given the time to do an adequate job. Sometimes the management 
just wants to give the impression that they are addressing problems in some way by stirring 
the pot. In these cases the problem is not with the consultants, but with management. 

Conversely, reengineering efforts can also fail when they shun outside help when they actu- 
ally need it. Outsiders often bring a fresh perspective or additional manpower that is other- 
wise unavailable within the organization. The attitude that all knowledge exists within the 
organization can be just as damaging as the converse. 

2.2.1    Examples 
Giving up control to consultants and contractors 
A parent organization brought in two groups of consultants to recommend options on whether 
to replace or rebuild a legacy system that was no longer able to meet emerging business 
needs. One group was to investigate the repair option and the other was tasked to investigate 
the replace option. A detailed joint report was produced with personnel from the contracting 
organization recommending that some of the system be repaired and some of the system be 
replaced. The organization did not have a strategy or set of decision criteria established 
ahead of time. Essentially, they ignored the recommendations of both consultants, and moved 
to a third contractor who took on the work of replacing the systems. Later, when the third 
contractor ran into difficulties, they scaled back the contract, but they still did not achieve the 
desired reengineering result. Perhaps each of the contractors could have offered some benefit. 
However, since the company's strategy shifted dramatically depending on internal political 
currents, they failed to gain from any of the outside contractors. 
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Getting the outside contractor that you are paying for 
Contracts for system evolution often cost tens or even hundreds of millions of dollars. Often, 
because of political considerations, there are tens of contractors in dozens of locations work- 
ing on a single system upgrade. Because some contractors are so big and operate out of so 
many different locations, it is hard for a contracting organization to know what it is buying 
when it signs so many contracts. In one case the contractor highly touted itself as a Capabil- 
ity Maturity Model® (CMM®) level three organization, but in fact was only CMM level three 
in limited pockets of the organization. When the contractor started getting behind schedule 
and asking for vastly increased payments for the contracted work, it was clear that the people 
actually doing the work were not up to the standards that were available only in the small 
pockets of the company. The contracting organization demurred on the requests for more 
time and money and stopped work on the contract. This resulted in re-planning the effort and 
long delays as a result of the transition of ongoing work to other contractors. 

Time and materials contracts often don't conserve time and materials 

One organization relied on a very reputable outside contractor to implement an entire con- 
tract. The contract was on the basis of time and materials. The contracting organization had a 
complex organizational structure, where the end users were isolated from those who were 
monitoring the contract. The end users had a strong voice (and in fact veto authority) over the 
requirements. Continually changing the requirements resulted in confusion, unnecessary ex- 
pense, and led to specifying a system that was not feasible to build. The contractor, whose 
incentive was more billable hours, gladly accepted each modification to the system. 

Although the contractor fell way behind schedule, the contracting organization did not realize 
this until it was too late. Several interrelated symptoms contributed to serious delays and a 
system that failed to meet many of its system tests. These included: gold plating of require- 
ments without an analysis of tradeoffs or costs; failure by the contracting organization to es- 
tablish meaningful milestones for monitoring the contractor; and failure of the contractor to 
inform the contracting organization when new requirements were reaching the breaking point 
due to complexity or performance constraints. 

2.2.2   Related Framework Highlights 

Outside consultants and outside contractors can be used effectively. They do provide man- 
power that may not be available inside the organization and they can provide an unbiased 
evaluation of a situation. When consultants are brought in, it is important to understand what 
role they are expected to play, and what skills they can bring to the table that are not available 
within an organization. The Framework and its associated Checklists can provide a starting 
point for assessment and analysis activities by illuminating relevant areas of inquiry. We 
know of at least one consulting firm that uses the Framework as a vehicle for organizing an 
inquiry and for probing and evaluating planned and ongoing system evolution initiatives. 

* Registered in the U.S. Patent and Trademark Office. 
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"The model serves to draw out important global issues early in the planning cycle and pro- 
vides insight for developing a synergistic set of management and technical practices to 
achieve a disciplined approach to systems evolution" [Bergey 97]. 

2.3   Reason #3: The work force is tied to old technologies 
with inadequate training programs 

The lack of training for the work force can cause reengineering efforts to fail. In most cases, 
the reengineering effort will be taking advantage of newer technology as compared to the 
legacy system. Frequently, the hardware will be changed and updated and new programming 
paradigms will be adopted. New vocabularies will be introduced for new ways of doing 
business. For example, many new systems will be based on the Internet, the Web, and dis- 
tributed component technologies. Old systems are often based on a functional style of pro- 
gramming using mainframe computers and radically different file systems. New program- 
ming languages and new user interfaces are commonly adopted. It is simply not possible to 
continue to do business as usual while at the same time bringing the same work force up to 
speed on the new technologies. Either there must be a conscientious and persistent effort to 
upgrade skills of the existing work force, or there must be a replacement of the existing work 
force, or there must be new workers added to the work force, or some combination of the 
three. 

2.3.1   Examples 

Middle managers see the trees, but not the forest 

The federal government uses language standards such as Ada and architecture standards such 
as Defense Information Infrastructure Common Operating Environment (Du COE) [DISA 
97] and High Level Architecture (HLA) [DMSO 98]. But many government employees are 
not trained to fully understand these standards and appreciate what they do and what they fail 
to do. Some understand the terminology at superficial levels. 

For example, one might naively expect that the HLA is an architecture that solves high-level 
enterprise problems rather than one that serves primarily to federate a collection of disparate 
simulations. But a mid-level manager rejected a domain-specific architecture for the organi- 
zation's test and evaluation domain, because he thought that HLA was sufficient for the task 
and that no high-level architecture was needed for reengineering the enterprise. This decision 
was due to lack of understanding of what the new technology can do and what it cannot do. 

The result is that a major initiative to upgrade and combine missions of disparate laboratories 
is proceeding without an appropriate domain-specific architecture. 

An aging work force that would rather not learn much 

One organization has a centralized maintenance group whose work force consists of hundreds 
of employees who are highly unionized. The vast majority of the workers have been working 
on the same maintenance jobs for twenty or more years. They have little turnover and few 
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have graduated with degrees in computer science. They know the legacy system extremely 
well and want to continue maintaining it until they retire. They are very resistant to change. 

A major system upgrade will totally replace an existing system with new technology includ- 
ing a new language, a new operating system, and a new software engineering environment. 
The existing work force viewed the system upgrade within the context of the existing system, 
and their operational support plan was inadequate. It did not provide for retraining the exist- 
ing staff to learn new technologies and new approaches or adding staff with the required 
skills. As a result, the organization will need to have a long-term maintenance contract with 
an outside vendor that will tie the organization to the vendor until either the existing work 
force retires or a newer work force takes over. 

A culture dependent on maintaining the status quo 

A large corporation had two different material management systems as the result of an earlier 
failed migration effort. These systems were deployed on two different platforms and had a 
significant amount of functionally redundant code with separate evolution paths. One system 
was used primarily for online data entry with a local version of the entire database. The sec- 
ond system, which was asynchronously updated by the data entry system, stored the perma- 
nent records and performed the primary business functions of materials management. This 
arrangement resulted in chronic code consistency and runtime synchronization problems 
between the two systems. As a result, a staff of 10 maintenance programmers was required to 
spend full time (and substantial overtime), fixing bugs and correcting data inconsistencies. 

A study was performed that analyzed the work of the maintenance staff, the types of prob- 
lems being encountered, and the programs that were affected. This study determined, not sur- 
prisingly, that data synchronization problems between the two systems were responsible for 
80% of the maintenance costs, so it recommended a short-term effort to migrate away from 
the front-end system. However, the recommendations were turned down. A whole culture had 
grown up around fixing database inaccuracies, and the associated overtime pay that was re- 
quired. The existing programmers felt that their jobs were threatened and the management 
information systems (MIS) manager did not see any clear gain for himself because organiza- 
tional budgeting considerations made funding of (even short-term) reengineering efforts far 
more difficult than funding of maintenance.  The status quo carried the day and unwarranted 
maintenance costs continued in the organization. 

2.3.2   Related Framework Highlights 

Cultural issues such as those described in the examples above are difficult to change in the 
short term. Training helps to change the culture, but it is not sufficient. The Framework has 
a lot to say about the organization and technologies (two of the seven components of the 
framework), which influence the culture over time. Organization is divided into management 
activities and infrastructure support activities. Infrastructure support includes "training and 
technology transition." One of the checklist questions is, "Are the training needs of the sys- 
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tems engineers and software engineers identified?" Among the checklist questions in the 
Technology component are the following: 

• Is the cost, schedule, and impact of applying the new technology acceptable? 

• Is adequate training available? 

• Are key members of the project team already well versed in the technology? 

• Can they act as mentors to other team members? 

2.4   Reason #4: The organization does not have its legacy 
system under control 

Before a system can be managed effectively, a system baseline under configuration manage- 
ment should be in place to aid in disciplined evolution. The system needs to be well docu- 
mented, with an understanding of the priority of change requests and their impact on the sys- 
tem. In addition, the following items need to be in place: data on the costs of maintaining the 
system, adequate configuration management, and planning and project management capabili- 
ties. If these capabilities are not available, the maintenance effort becomes crippled and cha- 
otic, and long-term planning becomes problematic. 

The heritage of a legacy system can have a large influence on reengineering failure. Many 
legacy systems are not under adequate control, because the systems are poorly documented, 
have inadequate historical measurements, and inadequate change control processes. As a re- 
sult, it is difficult to understand the current system, to manage it, and to manage changes or 
plan evolution. 

One barometer of whether a system is under control is the way in which change requests are 
handled. If change requests can be given a priority for both importance and difficulty, rational 
decisions can be made for new releases. Historical data on similar types of changes, as well 
as on the ease (or difficulty) of changes to the affected modules, provide an important base- 
line for being able to make changes within schedule and resource constraints. 

Another indicator of control is the availability of historical metrics. This includes changes 
that have been made, costs of the changes, and any problem areas that have occurred. Since 
every organization is unique, it is important for the data to reflect the unique process and per- 
sonnel ofthat organization. For example, data on the initial cost of each component, the size 
of the component, change history, types of errors, and costs of making changes provide an 
important part of this baseline. 

When such data is not available, it is impossible to make meaningful cost projections for 
various classes of changes to the system, or to be able to plan on any kinds of long term 
changes. This results in new releases coming in late, without adequate functionality. It also 
makes migration efforts impossible to plan. 
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2.4.1 Examples 

Guesses substitute for historical data 

An organization had a legacy system that was inadequate for dealing with rapidly expanding 
business needs. A large scale reengineering effort was undertaken to migrate to a new data- 
base and to incorporate major new functionality. The existing legacy system did not track any 
historical data. As a result estimates were made based on guesses. These guesses, as might be 
expected, were grossly inaccurate. The result was that the reengineered system came in sev- 
eral years late, and that several MIS directors lost their jobs as the deadlines were missed. 

The legacy system had inadequate change processes 

A large system had a history of chronic problems. There was a substantial backlog of trouble 
reports, with little discernible progress in working down the backlog. When an analysis was 
done, it was found that the change requests did not have any metrics associated with them, 
nor was there any indication of ease of change or severity. For example, a typographical error 
on a page of documentation appeared equal to an error indicating the system could not be 
initialized. In addition, there was no prior analysis of which modules in the system were rela- 
tively error free versus those that had many errors. There was not a repeatable process for 
making changes. As a result it was virtually impossible to estimate how long minor changes 
would take to accomplish, much less long-term evolutionary changes. (After a major effort at 
developing data for the trouble reports, a certain amount of stability was established for the 
system.) 

Informality of all system management processes 

In a large migration effort, there was not an organized process for implementing change re- 
quests, and no historical data on the costs of making changes was available. Essentially, 
changes were made in a sequential order with some rough ordering of priorities based on the 
intensity of user requests or complaints. The only data that was tracked was based on the 
number of maintenance programmers on the staff. Configuration management was minimal. 
Project plans were not developed, and milestones were very informal. Documentation was 
sketchy and outdated so that the maintenance staff viewed it as almost useless. As a result, 
the organization did not have control of the legacy system. When a major change to the sys- 
tem was attempted, it failed because the organization had not established the capability of 
making either minor or major changes to the system. 

2.4.2 Related Framework Highlights 

The Framework is essentially about the processes that facilitate the evolution of systems. It 
defines the legacy system as one of the seven building blocks for a successful system evolu- 
tion. The legacy system is subdivided into three parts: the core system, the operational envi- 
ronment, and the support environments. The core system is the software intensive system 
that is the candidate for evolutionary improvement. Its architecture, products and services, 
and functionality characterize it, as well as its quality attributes (e.g., usability and perform- 
ance). The operational environment includes the users, the interfacing systems, and network 
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Communications. The support environments include tools for development, integration, and 
testing. The Framework provides a context for assessing the health of a legacy system. The 
questions in the Checklist focus on the current state of the three parts of the legacy system. It 
helps with the decision to repair or replace a legacy system and points to the weaknesses that 
could be early indicators of failure of a migration effort. 

2.5    Reason #5: There is too little elicitation and validation 
of requirements 

System failure can be caused by too little elicitation and validation of requirements for the 
reengineering effort, as well as by significant flaws in the requirements elicitation and vali- 
dation process. There is often no documented concept of operations for the target system that 
has the buy-in of key stakeholders (e.g., external and internal customers, external and internal 
users, domain experts, and project team). 

Requirements specification is a thorny problem even for "green field" developments (i.e., 
development from scratch). There are functional requirements and non-functional require- 
ments, user requirements and customer requirements, hardware requirements and software 
requirements, architecture requirements, maintenance requirements and logistical require- 
ments. All of these reflect the fact that requirements are not unidimensional. Requirements 
are not only an expression of the needs of the intended users, but of the many stakeholders 
who have a vested interest in the system. 

For reengineering efforts there are additional problems in eliciting and validating require- 
ments because a requirements baseline for the legacy system frequently does not exist. In the 
relatively few cases where there may be one, the requirements are typically out of date and do 
not correspond well to system functionality. Assuming that the existing requirements base- 
line is in good shape, or assuming that there is a small requirements delta when there is actu- 
ally a large delta, can be deadly. 

2.5.1    Examples 

Starting from unsatisfactory baseline requirements 

An organization based its requirements approach (and planning) for reengineering a main- 
frame-based system on the premise they simply wanted to "migrate" the existing mainframe 
functionality and its processing capabilities to a distributed system of workstations using a 
client-server architecture. They believed they could forego a formal requirements elicitation 
and validation process, and just concentrate on the "requirements delta." In their thinking, the 
delta corresponded to a few new features they wanted to add, along with the processing dif- 
ferences stemming from migrating from a batch-oriented system to an interactive one. This 
incremental approach to eliciting requirements was rendered more challenging by lack of 
documentation. There was no user's guide, and the minimal system and software documen- 
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tation that did exist was quite out of date due to years of software modifications and a legacy 
of changes to the system. 

After a series of setbacks in implementing the migration effort and the breakdown of a reme- 
dial planning effort, the organization adopted a recommendation to develop a concept of op- 
erations (CONOPS) as a first step in the requirements process. They subsequently produced a 
CONOPS that aptly described the proposed system from a user's operational perspective. The 
results were very revealing. When the CONOPS document was circulated among the 
stakeholders for comment, the organization was caught off guard by the feedback they re- 
ceived. It was the first time the stakeholders had clearly understood the operation of the sys- 
tem and it forced them to completely rethink their prior approach to requirements because 
major issues had been overlooked. 

Failing to recognize a large requirements delta 

The requirements elicitation and validation approach used by an organization to reengineer 
its voluminous, record-based transaction system was predicated on developing a concept of 
operations and preparing a detailed requirements specification. The concept of operations 
was not developed from scratch. They chose to describe the target system in terms of their 
own familiar processing sequence that corresponded closely to the legacy system's batch- 
oriented processing paradigm that was to be replaced by a data-centric system with a cus- 
tomer focus. Over 75 distinct artifacts, which were to be produced and/or processed by the 
system, and 30 specific agents (who were to be users of the system) were identified in the 
concept of operations. However, the CONOPs did not systematically describe the role of 
these agents, or the function of the artifacts, and how they were used, by whom, and when. 

It was not clear if the CONOPS was describing a capability of the current system or the pro- 
posed one. This reinforced the notion that the proposed system was a moving target. In addi- 
tion, the CONOPS did not include any end-to-end, operational scenarios which were needed 
to provide examples of how the system would conceptually operate and how it would fulfill 
the diversified needs of the users. Furthermore, there were many instances of internal incon- 
sistencies, and external inconsistencies with other documents such as the more detailed re- 
quirements specification. While the CONOPs was viewed by some as satisfying a develop- 
mental milestone, it failed as a high-level requirements document and it became "shelfware." 
There were two reasons for this failure: 1) the development of the CONOPs was largely con- 
tracted out without the active participation of experienced users, domain experts, or other 
system stakeholders, and 2) the document review consisted of a perfunctory sign-off by the 
project leader and upper management. 

2.5.2   Related Framework Highlights 

Today there are many practices aimed at doing a better job of defining requirements such as 
creating user scenarios, rapid prototyping elements of the system, or developing storyboards 
to better define the user interface and obtain greater insight into the desired system features 
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and functionality. For example, Ivar Jacobsen's "use cases" [Jacobsen 92] are now often used 
to capture requirements in a database and can be used effectively to elicit deltas and to vali- 
date requirements. Each of these practices is as appropriate for reengineering as for new de- 
velopment. The Framework attempts to draw attention to the important role requirements 
play, and serve as a catalyst for considering some of the more promising techniques for re- 
quirements elicitation and validation. It does this by asking a set of questions such as: "Is 
there a concept of operations to describe the proposed target system?" "Have operational 
scenarios been developed to describe how the proposed system will operate?" "Have the 
concept of operations and operational scenarios been validated with customers, users, and 
key systems personnel?" 

2.6    Reason #6: Software architecture is not a primary 
reengineering consideration 

Failure can occur when a methodical evaluation of the software architectures of the legacy 
and target systems is not a driving factor in the development of the reengineering technical 
approach. In the first place, the evaluation is necessary to determine whether the legacy soft- 
ware architecture is viable at all as a base for further development. It may turn out that the 
best decision is to throw out the existing system and start from scratch. 

Software architecture is defined by Bass, et al. [Bass 98] as follows: 

"The software architecture of a program or computing system is the structure or structures of 
the system, which comprise software components, the externally visible properties of those 
components, and the relationships among them." 

If the existing architecture represents a viable starting point, the reengineering technical ap- 
proach must be grounded in that architecture. To do otherwise is to start a "green field" de- 
velopment and abandon the previous heritage. Most architectures are by nature long-lived 
and slow to change. Unless the legacy system architecture is well understood, it becomes 
very difficult to build a new compatible architecture. If the old architecture is well under- 
stood, it becomes possible, for example, to use the existing interfaces to wrap components for 
use in the new architecture. If the old architecture is well documented, it is possible to use 
the same types of documentation for the new architecture. Failure to evaluate the existing 
architecture will lead to gratuitous inconsistencies between the legacy and target systems. It 
will also lead to more work and more troubles. 

2.6.1   Examples 
Combining subsystems into federations is not always the best solution 

This organization had a large number of independent systems that tested various aspects of 
the avionics for aircraft. Each of these systems worked well independently and the plan was 
to combine them into a large test system in which independent avionics systems could be 
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tested simultaneously under more realistic scenarios in a real-time environment. The plan 
called for each of the systems to be upgraded independently and to define interface specifica- 
tions to insure that all the systems would work together when completed. 

However, insufficient time or emphasis was placed on a comprehensive architecture to define 
the optimal framework into which all the independent systems would fit. In addition, the in- 
tegration work was delayed due to funding cutbacks. The result was that the independent 
systems were upgraded without a strong emphasis on how the system would finally be inte- 
grated. As the upgrades proceeded, the independent systems became more inflexible and less 
amenable to change. The interfaces became further refined, but without testing of those in- 
terfaces, the. chances of them working correctly declined. The end result was inevitably a 
system that was harder to maintain and with significantly increased total cost of ownership 
over its lifetime. 

In a similar case, there was an attempt to combine three different types of testing (pure mod- 
eling, hardware-in-the-loop, and open-air range) across a wide geographical area. One sce- 
nario used a real platform for a weapon system, with the weapon system itself on a laboratory 
bench, together with modeling of the trajectory of the weapon. Connecting the three pieces 
through satellite or ground links and well-defined interfaces could test the integrated system. 
Such a federation is supported by an architecture such as the Defense Systems and Modeling 
Office (DMSO) HLA for integrating independent simulations.  But there was not an inte- 
grating framework architecture to clearly define rules, standards, and protocols for the indi- 
vidual federates. As a result, the solution was sub-optimal relative to what could have been 
achieved with an architecture that was had provisions for the broader domain. HLA had fa- 
cilitated a translation layer between inherently incompatible systems. 

Architecture is in the eye of the beholder 
There is hardly a word in software engineering that is as widely misused and abused as the 
word "architecture." As a result, different organizations often present very different ideas of 
the concept of an "architecture." One organization presented detailed views of the compo- 
nents in a fault-tolerant scheme for switching from one set of hardware and software to 
backup hardware and software (that was the driving factor of the architecture). Other organi- 
zations present a "wiring diagram," giving the major components and their interconnections. 
The "architecture" was described by a list of commercial products that were used in the con- 
struction of the system. The "architecture" is sometimes described by giving a model of how 
the user interacts with the system. The problem with all these different versions of "archi- 
tecture" is that it slows and distorts communication. The definition of architecture and the 
architecture itself must be clearly articulated so that all the stakeholders can communicate 
with one another. Various views of the architecture are important, but they must be clearly 
defined and compatible with one another. These views need to bridge the gap between the 
technical and the non-technical stakeholders. 
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2.6.2   Related Framework Highlights 

The Framework defines the legacy system and the target system as two of its seven elements. 
Both of these systems consist of their core system and their operating environment. Unless 
there is a deep understanding of the core system and its operating environment, the require- 
ments of the system evolution effort cannot be understood. The legacy system has customers, 
customer sites, and user groups. Interfacing systems, networks, and both internal and external 
users and usage patterns must be considered. In addition, interoperability considerations, se- 
curity measures, and logistics need to be evaluated. While the Framework does not deal ex- 
plicitly with more detailed architecture concerns, it helps to formulate the procedural and or- 
ganizational underpinnings for defining and expressing an architecture. Boehm [Boehm 99] 
describes the hazards of model clashes in architecture descriptions. 

2.7    Reason #7: There is no notion of a separate and distinct 
reengineering process 

The means by which a legacy system evolves can have a large influence on success or failure. 
The existence of a documented life cycle process and corresponding work products are often 
wrongly viewed as being evidence of a sound reengineering process. Although work products 
are a necessary outcome of a reengineering process, there needs to be a set of tasks and guid- 
ance to perform each step, as well as an understanding of how the whole fits together. In ad- 
dition, it is necessary to take a broad reengineering-in-the-large view that integrates the proc- 
esses and work products for the entire project. When these processes and products are 
absent, or are simply hollow exercises, failure of a reengineering project is a natural conse- 
quence. 

Four critical elements of any reengineering undertaking are the people, the technology, the 
process, and the resources available. Quality people, with ample resources, employing suit- 
able technologies rarely produce a quality product without using a quality process. Although 
reengineering may be viewed as a relative newcomer on the technical scene, it is no different 
from any other engineering discipline from the standpoint of being dependent on proven pro- 
cesses. The elements of a software reengineering process closely parallel those of the classic 
software development process. Reengineering, though, involves a higher degree of "con- 
strained problem solving" by virtue of the fact that the legacy system is the starting point. 
Typically this entails reverse engineering the legacy system software to obtain comprehensive 
program understanding as a precursor to reengineering the system. 

2.7.1    Examples 

A generic paper-driven process is not the solution 

As part of an internal improvement program to mature its software practices, an organization 
developed a comprehensive life cycle model that prescribed a high level process covering all 
aspects of software development from initiation through deployment and operations. The ini- 
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tial reengineering project produced a project plan, activity network diagrams, and elaborate 
activity charts for all the prescribed phases. Although it appeared that everything was pro- 
gressing normally, something was awry. The project team followed the exact detailed phasing 
of the model and created all the required documents. However, except for terminology that 
was unique to their effort, the charts were generic and could have applied to almost any proj- 
ect. The effort gave the appearance that "they really had their act together." However, major 
pieces of the job fell through the cracks. Critical dependencies in the sequencing and phasing 
of the tasks were overlooked, key analysis tasks such as reverse engineering and baselining 
the legacy system and performing an architecture evaluation were not included, and key re- 
views were treated as perfunctory signoffs with no provision for feedback and incorporation 
of results. 

Management did not involve any of the project personnel in developing the model, nor did 
they pilot the model, or solicit input from the organization before requiring its use. As a result 
the process model did not have buy-in from the participants. 

By blindly following the model using the prescribed tools, the project adopted a superficial 
and highly fragmented process that emphasized the production of the prescribed documents 
instead of the specific systems and software engineering tasks needed to incrementally 
reengineer the system. Since the model was foreign to the way the project leaders and practi- 
tioners were accustomed to doing their jobs and was unilaterally forced upon them, they only 
half-heartedly agreed to follow it. The results were not surprising to anyone other than top 
level management. 

Metrics require a process to use them 
An organization had collected a large amount of system performance data. However, there 
was not a clear understanding of the problem they were trying to address or the relationship 
of the particular metric to their business goals and objectives. 

One critical problem was how to contain the growing number of trouble reports that were 
being submitted by users experiencing operational problems. Although data were available 
on the problems being reported by users, there was not a single, well-defined process for log- 
ging, categorizing, validating, prioritizing, and resolving problem reports. The reports were 
submitted by the external user community, internal system users, and developers. They were 
subsequently processed by various departments and projects within the organization. 

The organization later implemented a centralized, enterprise-wide problem reporting process 
to obtain quantitative data on the problems being experienced and insight into where they 
should be investing their limited resources in fixing system problems. It provided insight into 
the types of maintenance and reengineering strategies that would be most effective for coun- 
tering the growing number of system problems and implementing new products and produc- 
tion capabilities. Nevertheless, without the tie back to the business goals and objectives, the 
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organization straggled with what to do with the all the data they collected. This distracted 
them from dealing with critical system problems. 

2.7.2   Related Framework Highlights 

To sort out these types of problems, the Framework looks at efforts from a "reengineering in- 
the-large" perspective as opposed to considering more narrowly focused aspects such as the 
reengineering of specific software applications and components. While reengineering the 
software applications is a critical element, it is a lower level task that can be defined once the 
major reengineering considerations such as defining the operational system concept, migra- 
tion strategy, and software architecture for the target system are resolved. The object of tak- 
ing an enterprise approach is to systematically evaluate the major elements that contribute to 
the reengineering problem and solution space and evaluate how well the organization and 
project are equipped to perform the reengineering tasks. The Checklists can help to accom- 
plish this. 

2.8    Reason #8: There is inadequate planning or inadequate 
resolve to follow the plans 

When reengineering software intensive systems, projects often tend to get out of kilter by 
focusing on the low-level "software problems" and neglecting the intermediate-level tactical 
management planning and systems engineering planning aspects of the job. In developing a 
migration approach for reengineering legacy systems there are many global issues that often 
need to be resolved by an interdisciplinary team of engineers and domain experts in concert 
with the software reengineering decision-making. The team must develop a greater under- 
standing of the legacy system, its mission, the operational environment it is deployed in, and 
the users of the system as well as a keen understanding of the organization's goals and objec- 
tives for reengineering the system. 

Another symptom of this lack of planning is the absence of a documented project plan that 
has the buy-in of key stakeholders (e.g., organizational line managers, project team, domain 
experts, systems and software practitioners). Sometimes the vision and objective can be clear, 
but there is an inadequate roadmap for getting from the "as is" state to the "to be" state. 
Major reengineering changes require careful and extensive planning just as they do for "green 
field" developments. Such plans have many steps and involve actions on the parts of all the 
major stakeholders. Sometimes these plans are not written down and exist only in the minds 
of some key people, but with the passage of time plans decay. Sometimes management for- 
mulates them, but there is not promulgation of the plan throughout the organization. Some- 
times, the plans are incomplete. Sometimes, the plans have inadequate resources for imple- 
mentation. Sometimes the plans are changed frequently due to changing personnel, changing 
budgets, or changing whims. In each of these cases, the chances of failure are increased. 
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2.8.1   Examples 

Assigning the planning to a committee without clear leadership and 
empowerment 

A large organization in the middle of reengineering its computing facilities (to reduce their 
large maintenance and operating costs) began to experience some significant problems. Up- 
per managers became alarmed at the status of the project when they learned that there was 
not a viable project plan. At the insistence of the organization, the department formed a team 
to develop a formal reengineering plan. The "planning team" was a loosely knit, ad hoc 
group that included four in-house personnel and two consultants (one internal and one exter- 
nal to the organization). 

Each of the in-house personnel was responsible for some aspect of the legacy system and had 
a role in the reengineering effort. However, the reengineering initiative was not structured 
like a typical project. All the team members had their normal job responsibilities to contend 
with and were contributing to the reengineering and planning effort as a collateral duty. None 
of the team members assumed the position of team leader or acknowledged that they had 
overall responsibility for the effort; rather, they considered themselves as a "team of peers" 
who were drafted to develop the plan. Since none of them claimed to have planning skills, it 
was their desire that the consultants write the plan and they would review it. The consultants 
avoided taking responsibility for the plan, because (in addition to lacking profound knowl- 
edge of the domain and legacy systems) they were acutely aware that if they wrote the plan it 
would not be the team's plan and would soon become a "shelfware" document. 

The result was that the consultants produced an outline for the plan, serving as a catalyst to 
stimulate discussions for assigning sections for the team members to write. The team mem- 
bers surfaced a lot of tough issues and concerns but floundered in developing the plan. 
Among the stumbling blocks were the lack of clear cut goals and objectives, confusion over 
roles and responsibilities, lack of direction and authority to assign resources and make deci- 
sions, and an inability to obtain commitments from other organizational units participating in 
the reengineering effort. 

The lack of focused technical management oversight and control 
An organization had several hundred projects (in various phases of planning or development) 
that constituted the near-term maintenance, reengineering, and development efforts to revi- 
talize a legacy system. Each of these projects was independently initiated by a separate unit 
within the organization in response to a perceived need. Each of the "projects" focused on 
some aspect of improving the hardware and software system capabilities, but there was no 
coherent, enterprise-wide view of how all these efforts tied together and how they related to 
the operational deficiencies and needs. Since there was little oversight or coordination across 
the enterprise, the organization did not have a common understanding of the need, or its im- 
portance to the customer and user community, or its relationship to their own strategic goals 
and objectives. 
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From a systems engineering perspective, there was not a consistent and equitable means of 
determining the validity of the need, or determining its potential impact on the system (in- 
cluding cost and schedule). In addition, there was not a means for evaluating how the need 
could best be satisfied (e.g., through a maintenance action, or by an existing project working 
on a related problem or capability, or by creating a totally new project). 

Consequently, the organization lacked a coherent approach for sorting out the potentially con- 
flicting considerations associated with new needs and for providing cogent direction to en- 
sure a unified reengineering approach across the organization. Many of the projects com- 
pleted their efforts only to discover that their particular product (e.g., a revitalized system, 
subsystem, or component) could not be deployed due to system incompatibilities. These were 
the result of concurrent and uncoordinated changes to the legacy system baseline, which were 
occurring on an ongoing basis and precluded integrating new products without significant 
rework. 

Recipe for a Y2K Disaster 
A large, complex organization had been in the "thinking" stage about the year 2000 (Y2K) 
problem for a long period of time. They had issued statements to their collaborators and cus- 
tomers that the problem would be solved in plenty of time. Finally, at the corporate level, the 
organization issued a detailed "plan" to accomplish the necessary remediation. However, the 
organization had a set of far-flung business units that operated in a semi-autonomous manner. 
Because the central administration had little control over the day-to-day operations of the 
business units, the plan focused on the only area in which it had direct control, maintaining a 
complex database of each system and the status of its Y2K remediation efforts. 

The corporate headquarters exerted substantial pressure on each of the business units to re- 
port its progress in status reports. However, there were no increases in budget or resources or 
other centralized support to deal with the problem. In addition to this "take it out of your 
hide" approach, the master plan did not provide for any training to define the prescribed 
database requirements so the business units could eliminate database ambiguities and ensure 
uniformity of reporting. 

Personnel in the business units checked off milestones in the database in direct proportion to 
the amount of pressure they received from the central administration. However, the reliability 
of the checked milestones was highly suspect. A number of the major systems were in fact 
fixed and tested at an early date. However, it was still not clear at the beginning of 1999 
whether the numerous less critical systems would survive or fail during the coming year. The 
data were simply not reliable because the plan was inadequate to deal with the problem. 
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2.8.2   Related Framework Highlights 

The Framework can provide the skeleton for the plans, but it cannot provide the resolve. The 
resolve is provided when the stakeholders who are responsible for executing the plan are 
given the responsibility for developing the plan. What the Framework does is start the or- 
ganization off on the right foot. It asks a set of questions. If the questions are addressed, the 
organization will be on its way toward a robust plan. In many cases, the lack of resolve can 
be traced to lack of confidence in the plan or a poor plan. If the plan is a good one and it can 
be carried out efficiently without a lot of bureaucratic red tape, then the resolve to follow it 
will come much more easily. Part of the plan is to get the buy-in from stakeholders. Once 
that has been achieved, the plan will roll on its own accord. 

2.9    Reason #9: Management lacks long-term commitment 
Management support of the project means careful monitoring and putting things back on 
track when they stray off track. If management gets distracted with other projects during the 
course of a major reengineering effort, it will not know when things go wrong. Of course, 
management commitment is a generic problem that is common to all large-scale projects, 
even those outside the domain of software engineering. What makes this particularly impor- 
tant to reengineering is that the consequences of missteps in early stages can be catastrophic 
because errors are so hard to correct when they are found late in the process. 

When management abrogates its responsibility by throwing the problem "over the fence" and 
fails to stay closely involved and adequately support the project, reengineering projects are 
very likely to fail. When management is not fully committed to a reengineering effort, the 
project tends to lose its focus. By disengaging and entrusting this effort to others, the plan 
tends to deteriorate and go in different directions. If management gives up responsibility to 
lower level managers or outsiders, they will tend to take the project in different directions 
than were initially intended. 

2.9.1   Examples 

Managing to your expected lifetime in the position 

In one example in the DoD, a new officer took over after his predecessor's three year tour. He 
immediately made made a reorganization, and put a successful reengineering project on hold. 
It is typical in the military command structure for a tour of duty to last up to three years, but 
rarely longer. However, major system reengineering efforts usually last longer than three 
years. This leads to a built-in conflict between the overall demands of good management of 
the project and the fact that the military officer will be judged only on what is visible during 
his or her "watch" and not on what happens several years later when the system is completed 
and enters maintenance. Operation and maintenance costs may be the next officer's problem. 
Human nature being what it is, we have observed several examples where judgments may 
have been clouded due to the military tour-of-duty and reward structures. 
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In another example at a bank in 1997, an operations vice president refused to give his opera- 
tions manager the resources and personnel that he requested to attack the bank's Y2K prob- 
lems. The vice president saw little reason to address that long-range problem when he had 
short-range problems to solve. He was scheduled to retire in 1999, so he could not be held 
accountable for any shortcomings on January 1,2000. 

Keep disengaging from the work so it can chart its own course 

A large organization was faced with developing a prototyping facility. An interdisciplinary 
working group was formed to develop the prototyping process. The team consisted of internal 
personnel, outside consultants, industry and government experts, and local contractors. 

The first team meeting resulted in a large turnout and expectations were high. But as the work 
became more clearly defined and tasking assignments were being made, the team members 
dwindled down to the team leader and five other active participants, with only the team 
leader and one of the active participants from the organization. After a few weeks, the last 
remaining active participant dropped out due to a conflicting job assignment, leaving the 
team leader as the only remaining organization participant. This left no working-level per- 
sonnel involved to "champion" the process within the organization. 

Despite these impediments, the team initially made reasonable progress in developing a re- 
peatable process for evaluating candidate prototypes, including producing technical decision 
criteria and data necessary for sponsors, laboratory personnel, and contractors to determine 
how best to integrate the prototype capability into the target operational environment. How- 
ever, other tasks and "fire drills" began to consume the team leader's time and effort and 
made the scheduling of working sessions difficult and very sporadic. The team effort was 
faltering due to lack of management commitment and follow through. Finally, management 
unilaterally decided to cut the funding of non-agency personnel without first determining the 
impact on work in progress. 

2.9.2   Related Framework Highlights 

There is a whole realm of management activities that are defined in the Framework. They 
include strategic and business planning, marketing and customer liaison, information tech- 
nology planning, budgeting and managing resources, organizing coordinating projects, over- 
seeing and evaluating projects, and managing infrastructure support. All these activities take 
long-term commitment and support on the part of management. There is no place for half- 
hearted efforts. There is no chance that management can just set the organization off in the 
initial direction and hope that its momentum will carry it to its ultimate goal. The framework 
provides detailed checklists to determine whether management is on track in its system evo- 
lution initiative. There are key work products that need to be produced, key organization 
processes that must be followed, and infrastructure support that must be built and maintained. 
Each of these key elements needs to be communicated through the management reporting 
chain. 
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2.10 Reason #10: Management predetermines technical 
decisions 

Mandates or edicts issued by upper management that predetermine the technical approach or 
schedule, cost, and performance considerations without sufficient project team input or con- 
currence are frequently seen to cause reengineering failure. More often than we would like to 
admit, project schedules, costs, and deliverables are dictated by top management decisions. 
Software is a difficult business, and especially where one is dealing with legacy systems that 
may have poorly developed components and poor documentation. While top management 
does need to make decisions on the allocation of scarce resources, it is tempting for them to 
also determine specific deliverables and timetables. However, detailed planning of schedules 
and milestones can only be accurately determined through careful study of the technical pa- 
rameters of a system, based on an understanding of the system, historical data, and knowl- 
edge of the specific skills of the staff. When top management prescribes these details with 
little data other than hunches, the results are usually disastrous. 

In spite of the obviousness of this premise, our working experience with customers has 
shown this to be one of the most prevalent causes for the failure of reengineering initiatives. 
Although the outcome is very predictable, the cause of failure is often attributed to the tech- 
nical decision process, the technology that was used, or the reengineering team. 

2.10.1 Examples 

Firing the manager is not the solution 

A large commercial service company was in the third attempt to revitalize its system. The 
previous two attempts failed and had to be totally abandoned. The organization's chief ex- " 
ecutive officer (CEO) unilaterally mandated an unrealistic schedule for completing the effort. 
And to follow through on the "plan," the CEO appointed the organization's chief information 
officer (CIO) as the sole management agent responsible to oversee the work to completion. 
When the CIO eventually challenged the mandated schedule (based on the technical analyses 
performed by the reengineering planning team), the CEO tersely stated his position along the 
following lines: "If you can't complete the effort in the time allotted, I will find someone who 
can." It should come as no surprise that the average tenure of CIOs in the organization (and 
there were a procession of them) was 12 to 18 months. The resulting lack of continuity in 
management oversight (and support) only served to worsen the problems. 

Management edicts cannot fix price, schedule, and function 

As part of an agency-wide downsizing initiative, an organization was directed to absorb 
drastic cuts in its budget beginning with the next fiscal year. Management decided that the 
best way to reduce costs would be to migrate from a mainframe to a client-server system. 
However, management had predetermined the cost, schedule, and capability parameters for 
the project. Consequently, the only variables in the "migration equation" left to the project 
team were the actual implementation approach and the quality of the end product. It soon be- 
came obvious to the planning team that the effort and resources required for the system mi- 
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gration had been grossly underestimated. The effort was being viewed as a simple "migra- 
tion" task when, in fact, it was a large scale reengineering effort that would have agency-wide 
impact. What is the difference? In a classic migration approach the existing software is "re- 
hosted" to a new computing platform but the basic functionality of the system remains intact. 
Only the logical and physical design of the underlying system interfaces is affected. In this 
case, however, extensive changes affected the system's functionality, data processing algo- 
rithms, performance, and overall operation that reflected their moving from an archaic, 
monolithic system to a highly distributed one. 

Edicts to save money now may increase future maintenance costs 

At the organizational level, a decision was made to migrate to a new language and operating 
system. Funding was limited, so a decision was made by management to do the physical con- 
version first and to try to catch up with the documentation and design issues at a later date. 
Following this decision, the system was converted through brute force methods. However, 
the new language was structured in a significantly different way, and the resulting code re- 
quired a different approach to maintenance and support. A serious problem was encountered 
when the next release of the system was scheduled. The maintenance programmers did not 
have strong expertise in the new language, and they could not understand the system without 
documentation. The release date was missed and a redocumentation and training effort was 
belatedly undertaken. 

2.10.2 Related Framework Highlights 

A section of the Framework raises organizational issues and concerns that can have a signifi- 
cant impact on the conduct of a reengineering initiative. At a high level it describes manage- 
ment activities as well as management infrastructure support capabilities. It highlights some 
of the key organization processes and the key work products. Included among the checklist 
questions (under the section entitled "should avoid doing") are an itemized list of unfortunate 
—but all too common—organizational practices. Like the dysfunctional practices described 
in these examples, they can undermine the technical work and cause disastrous results. One 
checklist example of a "to be avoided" practice that directly relates to these examples is, 
"Have some aspects of the solution space been predetermined before analyzing the system 
and involving the project team?" 
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3 Summary 

Reengineering efforts are replete with examples of failures. In fact, the documented record 
suggests that there are far more failures than there are successes. The SEI was founded in 
1984, at least in part, to investigate why so many software-intensive system developments 
efforts failed to meet their stated requirements, were late, and went over their budgets. As 
more and more systems have been built, and more and more systems are evolved from exist- 
ing systems rather than being built from scratch, the same questions have been raised relative 
to reengineering efforts. But the task of evolving a system from an existing system has simi- 
lar pitfalls. There are just as many failures in trying to evolve systems as there are building 
them in the first place. 

We have provided examples of some of the most common reasons for reengineering failures. 
We have documented the general modes of failure with examples from our direct experience. 
We expect that these failure modes and these examples will be familiar to most readers. We 
offer them not to denigrate or second-guess the organizations, but rather to provide awareness 
that these failures are not at all uncommon and that there is hope for a better way of doing 
business. Getting it right takes hard work, organization, and planning. By no means does the 
Framework provide all the answers, but it does provide a basis to start the planning of any 
migration effort in a wide variety of different organizations. Certainly one size does not fit 
all and system evolution is a non-trivial and long-range undertaking requiring a wide variety 
of resources. 

The Framework attempts to provide tangible guidance to assist managers in avoiding the 
failures represented in this report. It does this by providing 

• a global frame of reference for answering the questions (i.e., an enterprise-wide context) 

• insight into contributing factors (i.e., the Framework elements) 

• insight into related activities, practices, and work products 

• a set of checklists for probing the relevant management and technical issues 

In short, it provides a context for identifying and solving the high-level reengineering prob- 
lems. 

In the words of the Framework: 

"Developing and fully validating effective management and technical practices for software 
evolution is a long-range undertaking. While it is not realistic for an organization to think it 
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can develop a 'one-size-fits-all' set of practices, it is reasonable to expect that an organization 
can reach a state where the practices they adapt and use achieve predictable and repeatable 
results. The enterprise framework represents a starting point for assessing the need for de- 
veloping a synergistic set of management and technical practices and achieving a disciplined 
approach to system evolution." 

Robert Glass has, over the last 20 years, documented numerous computing projects that 
failed (e.g., see [Glass 98]). Like Glass, we have found that many of the reasons for these 
failures can be traced directly to management rather than to technical shortcomings. We need 
to do a better job in recognizing specific failure modes and in empowering management to 
take corrective action. The first step is awareness. We hope this report plays a small role in 
raising the awareness of the reasons for failures. 
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